Connect with us

Peripherals

Overview NVMe-ADATA XPG SX6000 Pro: is a terrible cheap NVMe SSD?

Advertisement
30% Off Phone Bundles w/ promo code SM30OFF at Simple Mobile Valid 11/1- 12/31 Max discount $100. Excludes Samsung Galaxy S8/S8+/Note 8, iPhone 8, free phone, and some special priced phones.

Personal computers are gradually moving to using SSDs with NVMe interface. Such SSD already ceased to be exotic solutions to individual enthusiasts in pursuit of maximum performance, and took place in the minds of the General consumer. Even in the domestic market, which is a severe inertia, NVMe SSD now is about a quarter of the total volume sales of consumer drives. And if we talk about models with capacity from terabytes and higher, in this segment, the proportion is even higher NVMe SSD – these drives prefer every third buyer.

However, no particular surprise is not the cause. Drives based on flash memory generally much cheaper this year, having lost in the price more than 50 %, and among NVMe devices began to appear a large number of models that try to come close in price to the SATA drives. And sometimes they do it. In some cases, an overpayment for a more modern interface is less than 10-20%, despite the fact that NVMe solutions more compact, more convenient when assembling the system, and most importantly, obviously more productive.

Of course, one of the main initiators of the rapprochement of the prices of SATA and NVMe SSD was the Kingston, which flooded the market with a very affordable NVMe drives A1000 series, and during the year, gradually extending the cost of this proposal to the price of a SATA SSD of the middle class. However, we can say that mass recognition NVMe drives happened only to the efforts of Kingston. There was an inexpensive SSD with a progressive interface and other manufacturers the second or third echelons. And if Kingston A1000 – is largely a compromise solution, which is using for data transfer mini-bus PCI Express 3.0 x2, then other developers began to offer drives with a similar price but with more impressive specs. Here as examples are the previously reviewed drive Transcend SSD 110S with the technology of HMB or a hero of today’s review – ADATA XPG SX6000 Pro.

To do tests of this new ADATA made us of the fact that it is presented as the best option among inexpensive consumer NVMe-based solutions. ADATA is of great love to all kinds of experiments with the platforms of solid-state drives and the XPG SX6000 Pro this plan is excellent successor of the traditions. It is extremely rare unbuffered controller Realtek development, which nevertheless promises quite high for its class performance. In the case of controllers Realtek we have not yet seen, therefore, to give at least some preliminary evaluation of this solution we can’t. So, to get acquainted with the XPG SX6000 Pro will have to carefully and in detail. That is what got this review in which we try to answer the question of whether XPG SX6000 Pro as a good system of SSD for computers the middle class.

#Specifications

So, ADATA XPG SX6000 Pro is a drive-based controller Realtek RTS5763DL. And this is important, because no other SSD manufacturers second tier on the basis of the chip at the time of writing did not exist. Consequently, the drive that we have today – a unique model. However, XPG SX6000 Pro is not the first experience of cooperation ADATA and Reaktek. Previously, the range existed ADATA XPG model SX6000, which used controller Realtek RTS5760, so we can say that the appearance of the updated “professional” drive with a more recent base chip special surprise is not.

But still seems a little strange that when switching to another controller ADATA limited to only appending to the name of the word Pro. And in General the new drive radically different from its predecessor. Moreover, initially XPG SX6000 Pro have been displayed at exhibitions under the name SX7100, and it would be a fairer name. Judge for yourself: in the new model communication with the system takes place through four, and not two lines PCI Express 3.0, and the performance increased about twice. In addition, XPG series SX6000 Pro appeared compatible with the Protocol NVMe Express 1.3, increase of capacities has expanded the model range, and the drives have become more reliable by adding in the firmware technology of error correction in LDPC encoding. Is just not enough in order to increase the index number in the product name?

Formal specification XPG SX6000 Pro got the following:

Manufacturer ADATA
Series XPG SX6000 Pro
Model number ASX6000PNP-256GT-C ASX6000PNP-512GT-C ASX6000PNP-1TT-C
Form factor M. 2 2280
Interface PCI Express 3.0 x4 NVMe 1.3
Capacity, GB 256 512 1024
Configuration
Memory chips: type, interface, process technology, manufacturer Toshiba 64-layer 256-Gbit 3D TLC NAND
Controller Realtek RTS5763DL
Buffer: type, volume No
Performance
Max. sustained sequential read, MB/s 2100 2100 2100
Max. sustained sequential write speed, MB/s 1200 1500 1500
Max. speed of random read (blocks 4 KB) IOPS 190 000 250 000 250 000
Max. speed random write (blocks 4 KB) IOPS 180 000 240 000 240 000
Physical characteristics
Power consumption: inaction/read-write, W N/a
MTBF (mean time between failures), million h 2,0
Resource record, TB 150 300 600
Dimensions: Ghvhg, mm 80 x 22 x 3.58
Weight, g 8
Warranty period, years 5

Used as the basis XPG Pro SX6000 controller Realtek RTS5763DL is a stripped-down version of the chip RTS5763, representing a complete high-performance controller with DRAM buffer and up to eight channels. However, a senior chip RTS5763 to the final products has not yet reached, and to take the rap for two and have four-channel UN-buffered RTS5763DL, which, however, is also quite good in its niche. Because from the specs it follows that the speed of XPG SX6000 Pro should be higher than that based on the controller Phison E11 Kingston A1000 and than Transcend SSD S110 on the basis of chip Silicon Motion SM2263XT, and its resources – at least not worse.

I must say that now there is a clear trend of transfer budget SSD to QLC-memory. She touched and NVMe storage devices — for example, four-bit memory based Intel and Crucial SSD 660p P1. But ADATA XPG SX6000 Pro, despite the close price, traditional uses TLC memory, which should have a positive impact both on reliability and performance. Moreover, ADATA is used not just any TLC memory, and a good 64-layer TLC 3D NAND production of Micron, which is formed from the small capacitance of the crystal and allows to obtain a memory array with a very decent performance.

However, XPG SX6000 Pro case is not without technology SLC-cache, which in this case is completely dynamic in nature. To illustrate her work with graphics speed continuous sequential write of data to the drive capacity of 512 GB (measurements performed on the free SSD).

In the fast SLC mode, the drive manages to write approximately 174 GB of data, while the write speed is about 1.5 GB/s, that is, the specification value. But then the free space in the array of flash memory ends, and the recording switches to slow TLC-mode. Moreover, simultaneously with the recording of the drive controller is forced to vacate the seat and to summarize data in cells that are written in SLC mode. As a result, the performance droped to around 170 MB/s. But under normal home use such situations will have to face uncommon – they can occur only in the single-step migration to SSD volumes of information that can take over a third free space.

As you can see, SLC-caching quite well compensates the shortcomings of TLC-memory, and the problem is not here. Much trouble in practice is able to deliver the lack of ADATA XPG SX6000 Pro dedicated DRAM buffer, which is needed to store the copy of the table of address translation with fast access. But controller Realtek RTS5763DL ready to provide some compensation technology HMB (Host Memory Buffer). The bottom line is that instead of allocated dynamic memory inside the SSD to store the working copy of the table of address translation controller uses the main memory of the computer. Direct access from the peripheral devices is one of the features of PCI Express, so for drives with the NVMe interface this is not a problem. Everything works out of the box and requires no additional configuration.

However, specific technology implementation HMB may vary. Different drives may ask the operating system to fit your needs different amounts of memory and to dispose of it differently. In order to evaluate the effectiveness of HMB in ADATA XPG SX6000 Pro, we checked the performance of the SSD in case of accidental melloblocco reading, which requires multiple search matches in the table of address translation. The dependence of the speed of random read from the data volume, in which requests are made and allows you to identify which part of the translation table is cached in RAM PC, and under what conditions, the performance of reading ADATA XPG SX6000 Pro does not suffer from a lack of the design of the drive allocated DRAM buffer.

When we tested unbuffered Transcend SSD 110S, convinced that the HMB technology can allow quite effectively cache the most popular part of the table address translation. However, considering today ADATA XPG SX6000 Pro RAM of the computer is used not so intensively. High speed arbitrary transactions are provided only within the smaller, 4-Gigabyte region, so that when the real load may not be enough. In other words, the technology of HMB in XPG SX6000 Pro compensates for the lack of this SSD DRAM buffer only partially. Under severe loads melkoplodnogo nature in which the assumed treatment of large data volumes, the performance of this SSD can drop dramatically.

In addition, this approach, involving the placement of the table of address translation in RAM the PC requires special support from the operating system. At the moment it can only provide Windows version 10 1709 and later, or Linux, starting with the release 4.14. In all other cases (for example, Windows 7) ADATA XPG SX6000 Pro will run “in compatibility mode” – as a very slow, UN-buffered memory.

#Appearance and internal structure

For testing we used an average representative of the model range ADATA XPG SX6000 Pro — of a capacity of 512 GB. On the one hand, this version no longer has artificially limited performance due to lack of parallelism of the array of flash memory, and with another – is quite inexpensive, only the area of 7,5 thousand roubles.

The ADATA XPG SX6000 Pro is a familiar configuration fee in the form factor M. 2 2280, made on a black PCB. Conveniently, all of the chips in this Board are placed on one side: this drive can be installed in low-profile slots M. 2, which are found in some thin laptops.

 

Another positive feature XPG SX6000 Pro is that the manufacturer, despite the budget nature of this model, have paid some attention to the issue of heat dissipation. In the box with the SSD it is possible to detect the heat-spreading aluminum disc with an adhesive layer, which the user can optionally stick on the surface of the chip. However, its small thickness and the sleek profile is unlikely to provide a high efficiency of heat dissipation, but even this option is still better than nothing.

Circuitry, which was used ADATA XPG SX6000 Pro includes five chips. First and foremost is the actual controller Realtek RTS5763DL. Please note — it has a fairly small size, due to its inner simplicity: four-channel architecture and the lack of an integrated controller DDR4/DDR3 SDRAM.

The other four chips is flash memory. They XPG SX6000 Pro have their own marking ADATA, which means that the producer buys TLC 3D NAND in the form of plates of semi-independently and cuts them into individual crystals, testing and packing. This approach allows to reduce the cost of the drive, but you need to keep your eyes open. Despite the fact that the manufacturer of the flash memory in the XPG SX6000 Pro is the company Acer, ADATA determines crystals what quality is acceptable to use in this drive. In other words, formally, considering a drive based on a 64-layer TLC 3D NAND second generation of one of the leading manufacturers, but actually the reliability of such a memory may differ from the same original 3D TLC NAND used in SSDS are more high-class.

The crystals are 64-Micron-layer 3D TLC NAND have a capacity of 256 GB, therefore, the controller Realtek RTS5763DL in ADATA XPG SX6000 Pro storage capacity 512GB works with an array of flash memory with a fourfold alternating devices in its four channels. It is this factor which makes considering the drive is a fairly productive solution for serial operations.

Traditional sticker labeling is ADATA XPG SX6000 Pro on the back. However, very informative, it is no different: it is reported only the name, capacity and serial number of the SSD. Information about the firmware version or the date of production.

#Software

With the service software from ADATA, the situation is far better. Proprietary tool for storage companies exist, but is it extremely sluggish, but its features and interface leave much to be desired.

However, the utility SSD Toolbox with XPG SX6000 Pro compatible and the basic functionality still provides.

 

So, ADATA SSD Toolbox not only provides full diagnostic information about the device, but also allows to check the flash memory drive, send him a package of TRIM commands, or perform the automatic adjustment of operating system settings (disabling Superfetch, Prefetch and Defrag).

 

Also using ADATA SSD Toolbox to upgrade the firmware and perform a Secure Erase procedure.

 

In addition, after registration, acquired XPG SX6000 Pro on the manufacturer’s website you can get the key to a popular program for cloning data Acronis True Image HD 2013/2015.

SOURCE

Advertisement
40279873 Seagate Barracuda 2TB Hard Drive - ST2000LM015
40281184 Seagate Guardian BarraCuda ST500LM030 - Hard drive - 500 GB - internal - 2.5" - SATA 6Gb/s - 5400 rpm - buffer: 128 MB (ST500LM030)
Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Peripherals

A review of the drive, the Gigabyte Aorus RGB M. 2 NVMe SSD: the size of the illumination is not a hindrance

Advertisement
Replacement Laptop Batteries For Apple, Free Shipping!

Today’s review is curious at least for two reasons. First – we SSD released by Gigabyte, which drives absolutely not associated. All the same, this Taiwanese manufacturer of motherboards and graphics cards systematically expands the range of devices, adding a range of new and new types of computer equipment. Not so long ago we tested released under the brand name Aorus, Gigabyte the PSU, monitor and RAMand now is the turn to SSDs.

However, to be completely correct, it is necessary to mention that the Toshiba SSD delivers under its own brand for quite a long time. The first drives with the SATA interface it introduced a year ago, but it was not very interesting budget model c quite ordinary characteristics. Now Gigabyte decided to release a real SSD for enthusiasts with a modern interface NVMe 1.3, flagship performance RGB led branded gaming style. That’s why the Gigabyte Aorus RGB M. 2 NVMe SSD, which will be discussed later, and caught our attention.

The second reason that forced us to get more information about this novelty, is that it is based on a relatively new hardware platform, which we have not yet had to face. In the Gigabyte Aorus RGB controller is used PS5012-E12 independent of the Taiwanese company Phison, the development of which in recent times found only in the lower price segments and in high-speed drives do not fall for a long time. But now, apparently, Phison strategy has changed, and the company expects to regain a foothold in consumer drives a higher level.

Actually Phison focused on budget platforms SSD it is not because of some marketing reasons. Her problem was the fact that the process of final debugging and output products to the market, took lots of time, and the proposed Phison decisions were often obsolete. This forced the firm to fight for a place in the market only with the help of low prices, which led to the formation of platforms around its image again.

Such history threatened to repeat itself and with the controller PS5012-E12, as it was first demonstrated at CES 2018 a year and a half ago. However, this time the developers have time to finish your product to its obsolescence. The beginning of deliveries of the platform E12 company Phison announced in September, and now the first actual products based on it and finally got to store shelves.

The appearance of another controller for consumer NVMe drives are very important and need to market the event. Unfortunately, so far nobody has been able to offer a platform for NVMe SSD, which would allow to create a storage class 970 Samsung EVO Plus. New developments of Silicon Motion and Western Digital, as we have seen, are at a lower level. And this means that the South Korean company was able to monopolize the segment of high-performance NVMe SSD, keeping to their flagship drives high prices. That’s why we wait for Samsung EVO Plus 970 and 970 PRO will have some real alternatives, able to do advanced disk performance more accessible to consumers.

On the one hand, characteristics that Phison claims their new controller PS5012-E12, allow us to hope that the power it is at least not worse than Samsung Phoenix. On the other the desire to use this chip in their products have already stated at least two dozen manufacturers of the second and third tier. So, if all goes well, the market for consumer NVMe SSD can be a serious and pleasant for users to change. But don’t be in a hurry, and before you give vent to joy, let us analyze how really good the Gigabyte Aorus RGB platform Phison E12.

#Specifications

Usually the drives on the controller Phison represent typical products, similar to each other in basic characteristics, regardless of which company delivers them to the market. Actually, just like is the case of the Gigabyte Aorus RGB M. 2 NVMe SSD – this SSD is used templated hardware and software architecture with a brand-typical set of components. This means that the characteristics of the considered storage device is similar to any other SSD based on Phison controller PS5012-E12, for example MP510 Corsair, Team Group MP34, Silicon Power P34A80 or Patriot VPN100. You may have drives from different manufacturers can be some individual characteristics, but usually they affect only the exterior.

As for hardware designs, in any of the SSD controller Phison PS5012-E12 is applied to one and the same array of flash memory composed of 256-Gigabit devices BiCS3 (64-crystal layer TLC 3D NAND) manufactured by Toshiba. It is worth mentioning that this is a good flash memory, which is able to provide high performance. For example, similar to the array of flash memory used in drives WD Black SN750, which can be described as NVMe solid-solution average. But Western Digital’s own controller, Phison PS5012-E12 is a completely different story.

Until now, Phison had time to check two basic chips for NVMe SSD. First, PS5007-E7, was intended to create a planar drives based on MLC memory, however, despite the eight-channel architecture, was not very productive and was used in a fairly small number of models. The following controller, PS5008-E8, focused on support for 3D TLC NAND and won much popularity, but it was a frankly budget solution with four channels for the organization of the array of flash memory, a stripped-down PCI Express 3.0 x2 and without LDPC coding.

Phison PS5012-E12 on the background of previous chips – the solution to a completely different kind, designed from scratch. Here everything is done in accordance with modern standards. Supported PCI Express 3.0 x4 bandwidth to 3.94 GB/s and NVMe Protocol 1.3. The array of the flash memory is formed on a productive eight-channel scheme. It supports not only modern, but also promising types of flash memory. Support powerful methods of error correction based on LDPC codes. As the DRAM buffer can be used not only for DDR3L and DDR4 memory. Finally, for the production of chips PS5012-E12 used 28-nm process technology by TSMC, while earlier chip Phison ordered from UMC, where they were made on 40-nm standards.

Its new development Phison estimates are so optimistic, that does not hesitate to promise the performance of up to 600 thousand IOPS on deeply pipelined melkoplodnyj operations. And if this number is true, it can be argued that the theoretical power PS5012-E12 is much larger than the SMI SM2262EN, and almost reaches the level of Samsung Phoenix. In reality, however, believe that the performance of the controller PS5012-E12 hard enough. The fact that it is based on the ARM processor with only two cores, while the Samsung solution is based on pachydermia design.

And this is reflected in the characteristics of products that inform providers of final decisions on the chip Phison PS5012-E12. For example, for the drive of Gigabyte come in the following specifications.

Manufacturer Gigabyte
Series Aorus RGB M. 2 NVMe SSD
Model number GP-ASM2NE2256GTTDR GP-ASM2NE2512GTTDR
Form factor M. 2 2280
Interface PCI Express 3.0 x4 NVMe 1.3
Capacity, GB 256 512
Configuration
Memory chips: type, interface, process technology, manufacturer Toshiba 64-layer 256-Gbit 3D-NAND TLC (BiCS3)
Controller Phison PS5012-E12
Buffer: type, volume DDR4-2400,
512 MB
DDR4-2400,
512 MB
Performance
Max. sustained sequential read, MB/s 3100 3480
Max. sustained sequential write speed, MB/s 1050 2000
Max. speed of random read (blocks 4 KB) IOPS 180 000 360 000
Max. speed random write (blocks 4 KB) IOPS 240 000 440 000
Physical characteristics
Power consumption: inaction/read-write, W 0,272/5,485
MTBF (mean time between failures), million h 1,8
Resource record, TB 380 800
Dimensions: Ghvhg, mm 22 × 80 × 10
Weight, g 28
Warranty period, years 5

Despite the fact that Phison has touted its platform as a solution to E12 flagship level, the formal characteristics of the performance of the Gigabyte Aorus RGB M. 2 NVMe SSD noticeably weaker indicators not only 970 Samsung EVO Plus, but these drives as WD Black or SN750 ADATA XPG SX8200 Pro. And it’s not immediately sets in a positive way in relation to innovations.

Not encouraging, and the work Gigabyte Aorus RGB M. 2 NVMe SSD technology SLC-cache. The engineers at Phison in its new platform and are unable to develop a progressive dynamic algorithms and continue to rely on static SLC cache that the drive capacity of 256GB has a capacity of 6 GB, and 512 GB version – 12 GB. Specifications recording speed according to tradition belong to the accelerated mode, if to speak about direct writes to the TLC memory, its performance is about three and a half times lower. We illustrate this with a traditional schedule speed continuous sequential write on an empty Gigabyte Aorus RGB M. 2 NVMe SSD with a capacity of 512 GB.

The speed entries in the SLC cache reaches 2.0 GB/s, but this performance is very long, on the main array of flash memory write speed is only about 560 MB/s And this, incidentally, is considerably lower than the speed that produces a similar brand architecture of the array of flash memory WD Black SN750. Ultimately, to fully populate Gigabyte Aorus RGB NVMe M. 2 SSD 512 GB, you need to spend about 15 minutes, while the flagship NVMe drive Western Digital you can record one and a half times faster.

In addition, Phison adopted from Silicon Motion the idea of using SLC cache for “cheating” – increase the measurement speed reading benchmarks. Information included in the SLC cache, linger in it for a while to provide the best performance when accessing files that were recorded just. You can see this with a simple experiment, during which we check the speed of random melkoplodnogo read data from a file created on the Gigabyte Aorus RGB NVMe M. 2 SSD 512 GB, as immediately after the recording and after this the SSD was recorded some more information.

As can be seen from the graph, when a fresh test file is excluded from the SLC cache and then write additional 12 GB data read speed is reduced by about a quarter. This means that the simple benchmarks that measure the performance when using applications with a newly created file will display for the Gigabyte Aorus RGB NVMe M. 2 SSD to significantly inflated performance compared to the performance that is possible in actual use this drive.

In the end, the familiarity with the platform underlying the Gigabyte Aorus RGB NVMe M. 2 SSD leaves a reasonable doubt that the drive is legitimate to put on a par with the flagship NVMe SSD. However, this is obviously not a budget option, because the configuration of these drives does not involve any explicit savings in design. Moreover, if we talk specifically about the Gigabyte drive, it is sold much more expensive alternatives on the basis of the SMI controller SM2262EN, the performance of which can be attributed to the average level.

In addition, the Gigabyte Aorus RGB NVMe M. 2 SSD shows up pretty good warranty conditions. The warranty period is five years, and during this time the drive is allowed to overwrite the approximately 1500 times. This allowed even higher than the flagship drives, the manufacturers of the first echelon.

At the end of the story about the technical characteristics remains to notice an odd detail. The model number of the Gigabyte Aorus RGB M. 2 NVMe SSDS consists of two versions – 256GB and 512GB. No option for 1 Tbyte looks very suspicious: such capacity is not only popular among customers, but could allow to obtain better performance by increasing the degree of parallelism of the array of flash memory. Obviously the reason for its absence lies not in the features of the platform Phison E12, as other manufacturers offer and even dvuhterabaytnye terabyte drives based on it.

#Appearance and internal structure

For testing RGB Aorus M. 2 NVMe SSD AMD has provided elder and more powerful modification with a capacity of 512 GB. The drive was made in a typical form factor M. 2 2280, but its appearance can hardly be called ordinary.

Developers of Gigabyte showed remarkable imagination and has equipped its product with a massive radiator RGB led in a corporate style. Due to this, Aorus RGB NVMe M. 2 SSD not only markedly different from any other platform Phison E12, but is one of the most original NVMe SSD on the market, at least if we talk about the exterior.

Radiator mounted in the Gigabyte Aorus RGB NVMe M. 2 SSD, it seems very effective solution. It is not usual in such cases, a thin aluminum plate, and a fairly massive bar with two sawn along the edges of the grooves.

 

In reality, however, removes heat from drive, it mediocre, because the developers of Gigabyte does not care about its tight fit to the cooled components. Due to the fact that the height of the controller IC is lower than the height of chip flash memory, core chip SSD that radiator is almost not cooled. In addition, no heat sink is forced to do the memory contained on the reverse side of the M. 2 module. In other words, the entire cooling system is more of a decoration.

However, the scenery was quite spectacular: at the center of the radiator flaunts a logo Aorus – head eagle – with RGB led backlight. When the logo cyclically pulsates different colors. Strictly speaking, the backlight can be configured using the utility RGB Fusion 2.0, but this feature is available only for selected models of Gigabyte motherboards. In the compatibility list includes only the fee Aorus Intel Z390 and fee X299 Aorus Master. On any other motherboards algorithm of the backlight control does not work.

Usually all the drives are built on platforms Phison, use the same PCB design, provided by the authors of the controller. However, the Gigabyte Aorus RGB M. 2 NVMe SSD received a slightly modified PCB. On the Board added two holes for screw fastening of a radiator and three RGB LEDs, which illuminate the Aorus logo. But otherwise the layout of the printed circuit Board corresponds to the reference.

 

On the PCB the drive is an eight-channel Phison controller PS5012-E12 with concomitant 512-megabyte chip DDR4-2400 SDRAM Hynix production required to store a working copy of the table of address translation. The array of the flash memory formed from four chips labelled TA7AG55AIV which are located on the front side of the Board as on the back. Such chips by order of the Phison company manufactures PTI, which procures semiconductor stuffing directly from Toshiba. End up in every chip flash memory, posted on the Gigabyte Aorus RGB M. 2 NVMe SSD is four 256-Gigabit crystal Toshiba TLC 3D NAND with 64 layers, but the cutting and sorting these crystals of semiconductor wafers in charge of the Taiwan intermediary.

Thus, it seems that the Gigabyte drive should be used semiconductor crystals of relatively good quality. Such a conclusion can be drawn from the stated high-resource SSD with a small volume of the reserve space. After formatting, the owner of a 512-Gigabyte drive will be available approximately 476 GB of storage, 36 GB is a SLC cache, so a replacement Fund is just nothing.

#Software

Today almost all SSD manufacturers offer a utility service that allows you to monitor the status and manage their SSD. Gigabyte this role is assigned to the SSD utility Tool Box, but from the point of view of functionality should be included among the worst examples of similar programs: it is not able to practically nothing.

The only thing you can do with this utility is to see General information about the SSD to access its S. M. A. R. T.-telemetry, and run Secure Erase. The interface also provides the Optimization tab, but to choose it is not available.

SOURCE

Advertisement
Samsung J7 V just $5 mo. New device payment purchase req'd. Plus, free shipping.
Code: VZWDEAL. Enter this coupon code at checkout to get $100 discount on Samsung Galaxy Note 8. Includes free shipping. Restrictions may apply. Device payment purchase required.
Continue Reading

Peripherals

Budget NVMe SSD Samsung EVO vs 860: review of the ADATA XPG SX6000 Lite

Advertisement
Code: VZWDEAL. Enter this coupon code at checkout to get $100 discount on Samsung Galaxy Note 8. Includes free shipping. Restrictions may apply. Device payment purchase required.

As follows from statistics that are eager to share key SSD manufacturers, the supply of the usual 2.5-inch SSD with SATA interface as a percentage is gradually decreasing, and come to the fore more advanced products with NVMe interface. Yet SATA hard drives hold the lead in sales, but, in the unanimous opinion, the change has to happen in the course of this year, and should facilitate this ongoing active reduction of prices on the NVMe model.

What NVMe drives are getting cheaper now much more active than a traditional SATA SSD, it is not surprising. Initially on high-speed products using the PCI Express bus architecture, manufacturers have established additional fees. Now, however, they have to give. As NVMe segment grows, it comes to an increasing number of players who do not want to lose its sphere of influence promising direction and are prepared to wage aggressive fight. However, the current situation is that the fight over the attention of buyers due to the speed or functionality of NVMe products today are capable of very few. Leading positions in consumer NVMe SSD in terms of speed and functionality firmly seized offers Samsung. As we have repeatedly seen in the tests, a couple of Samsung PRO 970 and the 970 EVO Plus demonstrates a very convincing superiority over any alternatives, and any large or small competitors of South Korean company failed to construct any similar performance decision. As a result, most firms have no choice but to try to attract users and to get involved in a fierce price war.

This, of course, plays into the hands of buyers. A characteristic feature of today was the fact that among the variety of NVMe SSD formed a significant number of proposals with prices more specific to models with the SATA interface. Simple example: right now the stores are just a few options NVME drives, which are cheaper than the popular SATA model 860 Samsung EVO. And among them not only based on QLC 3D NAND solution in the face of Intel SSD 660p and Crucial P1 — included in this list and SSD c three-dimensional TLC-memory, using both a cut-down PCI Express 3.0 x2 (for example, Kingston A1000 and its similarity on the basis of the controller Phison PS5008-E8) and a full-fledged PCI Express 3.0 x4 (for example, Transcend MTE110S and analogs on the controller SMI SM2263XT).

We try not to overlook this kind of budget, but not trimmed on architecture NVMe SSD, which promise is clearly the best combination of price and performance than SATA drives. Today we consider it necessary to draw attention to one very interesting product – ADATA XPG SX6000 Lite. This SSD is the cousin of the recently reviewed ADATA XPG SX6000 Prowhich produced a very good impression against other budget proposals with NVMe interface. But now ADATA a little dance with the configuration and offers about the same thing, but noticeable 15% cheaper. As it turned out — we just try to find out in this review. After all, if you believe the manufacturer, the new ADATA XPG Lite SX6000 does not change either the base controller or the type of flash memory. And if this is true, then we have a very attractive model that is extremely affordable NVMe SSD to PCIe 3.0 x4, based on TLC 3D NAND and obviously superior in speed, any SSD with SATA interface.

#Specifications

Speaking about ADATA XPG SX6000 Lite, we do often will do the references to XPG SX6000 Pro. The manufacturer does not deceive when he says that it’s close relatives. Both the drive are based on the same controller Realtek RTS5763DL and use the same three-dimensional 64-layer TLC 3D NAND second generation manufactured by Micron. Why ADATA has released two (almost) identical drive on a different price and how did she seriously throw off the price of the Lite model? The answer to these questions is very simple: the cheaper versions applied a cheaper memory, which, on the one hand, has a lower gradation in quality of semiconductor crystals, and with another – increased to 512 GB, the volume of the crystals. The first reduces the resource and the second performance. And here before us there SX6000 XPG Lite, at first glance, the same as the XPG SX6000 Pro, but really – is completely different.

However, if we talk about the architecture of the considered innovations, in the address XPG Lite SX6000 difficult to make any special claims. Moreover, at first glance, this drive is almost too good to be one of the most affordable NVMe SSD on the market. Although controller Realtek RTS5763DL that serves as its basis, is found in the mass drives are extremely rare, this chip is quite worthy to occupy this place.

In essence, the budget RTS5763DL indicates only one thing – he is deprived of the DRAM controller, which eliminates the feasibility of the drives on the basis of traditional buffering table of address translation. But it is supported by buffering non-traditional, technology-based HMB (Host Memory Buffer). This means that RTS5763DL in Windows operating system 10 is capable of use for their needs part of the normal RAM that is available to him through the DMA mode of the PCI Express bus. Regarding other features, the controller is quite typical: it has four channels to communicate with flash memory, supports LDPC coding for error correction and uses four lines PCI Express 3.0 to enable the system. In other words, it is quite possible to compare with the same SMI SM6263XT, which created a long NVMe SSD.

Nevertheless, do not forget: XPG SX6000 Lite developers saved on the flash memory. Increased to 512 GB size crystals 3D TLC NAND is not as scary as QLC, but nevertheless negative influence of this factor can be seen even in passport characteristics.

Manufacturer ADATA
Series XPG SX6000 Lite
Model number ASX6000LNP‑128GT‑C ASX6000LNP‑256GT‑C ASX6000LNP‑512GT‑C ASX6000LNP‑1TT‑C
Form factor M. 2 2280
Interface PCI Express 3.0 x4 NVMe 1.3
Capacity, GB 128 256 512 1024
Configuration
Memory chips: type, interface, process technology, manufacturer Toshiba 64-layer 512 GB TLC 3D NAND
Controller Realtek RTS5763DL
Buffer: type, volume No
Performance
Max. sustained sequential read, MB/s 1800 1800 1800 1800
Max. sustained sequential write speed, MB/s 600 600 1200 1200
Max. speed of random read (blocks 4 KB) IOPS 100 000 100 000 180 000 220 000
Max. speed random write (blocks 4 KB) IOPS 130 000 170 000 200 000 200 000
Physical characteristics
Power consumption: inaction/read-write, W N/a
MTBF (mean time between failures), million h 1,8
Resource record, TB 60 120 240 480
Dimensions: Ghvhg, mm 80 x 22 x 3.58
Weight, g 8
Warranty period, years 3

If we compare the characteristics of the ADATA XPG SX6000 Lite specifications with the XPG SX6000 Pro, it becomes immediately clear that the low cost of new items will be traceable in all aspects. Diminished even the declared speed that drives manufacturers usually try to inflate all possible ways, given the technology SLC-cache, and as deep pipelining of requests. Thus, performance in reading has lost 12-15 %, and the record is 17-20 %.

That performance has decreased due to the decreased degree of parallelism of the array of flash memory (this is caused by the transition to a more capacious crystals), it is easy to see and the reduction in the rates of direct entry to bypass the SLC cache. In order to clarify how the ADATA XPG SX6000 Lite technology works rapid entry, we carried out a standard experiment with a continuous filling of the 512-Gigabyte version of the SSD by sequential writing. The results can be seen in the graph below.

SLC-caching ADATA XPG SX6000 Lite works on a simple dynamic algorithm — on-the-record in high-speed mode uses all available free memory. Therefore, clean the drive in SLC mode, able to record about 170 GB (one-third of the total). Performance at SLC record reaches 1.2 GB/s but then it drops sharply to about 130 MB/s, and with a very strong scatter in the instant figures. For comparison, the speed of the array of flash memory XPG SX6000 Pro was 20-25% higher. This way is manifested the penalty associated with a halving of parallelism of the array of flash memory from a cheaper model of drive. In the result in order to fill the 512 GB version of the ADATA XPG SX6000 Lite completely, you need to spend about 45 minutes. And it is very long: for example, 970 Samsung EVO Plus a similar volume can be completely down in 10 minutes.

At the same time, it should be noted: dynamic caching is good because it maximally protects the user from seeing the true speed of the array of flash memory in TLC mode. If you leave the drive has enough free space, even a slow SSD like XPG SX6000 Lite will be able to provide acceptable write speed. However, there is another “but”. This drive doesn’t have its own DRAM buffer is used for buffering tables of address translation memory system, the speed of XPG SX6000 Lite when working with large volumes of data can be reduced even for this reason. As practice shows, a significant drop in the speed parameters from XPG SX6000 Lite (like XPG SX6000 Pro) occurs when random operations on files or groups of files larger than 4 GB.

In other words, we should not forget that the ADATA XPG SX6000 Lite is still a budget NVMe drive, and if you decide to save, you will have to put up with some features. Moreover, such compromise in this case is considerably greater than in the case of XPG SX6000 Pro. And it’s not only about performance. For example, a cheaper version of the SSD you’ll be the worst warranty and lower the declared resource of the flash memory. While for XPG SX6000 Pro warranty period is 5 years on the Lite version is only reduced to three years warranty, is not peculiar to drives with NVMe interface, including model on the base of QLC-memory. In addition, for SX6000 XPG Lite warranty may only 480 times overwrite the amount of drive, while the ADATA XPG SX6000 Pro during operation, you can completely overwrite 600 times. However, as we know, such requirements have a formal character and to practice have a rather distant relationship.

In fairness it should be noted: some ADATA XPG SX6000 Lite is still superior to the XPG version of SX6000 Pro. Lineup of this new product includes four representatives, and the minimum capacity of the SSD is only 128 GB. However, the performance of the younger of the modifications is at a very low level. The 128-Gigabyte model, where the array of flash memory runs in dual channel mode, is unlikely to please the owners of superiority over SATA SSDS. That is why capacity XPG SX6000 Pro began with a 256-Gigabyte mark.

#Appearance and internal structure

For testing we used a representative lineup ADATA XPG SX6000 Lite with a capacity of 512 GB. On the one hand, this version has the sufficient degree of parallelism of flash memory and promises good performance, and on the other is a little more than 5 thousand rubles.

First look at this SSD enough to understand that this is really a close relative of the XPG SX6000 Pro. As Pro memory, new XPG SX6000 Lite is a unilateral module in the form factor M. 2 2280 with a black PCB, but also equipped with the same set of components distributed across the Board is absolutely in the same way. Differs only in the range of chip flash memory, which on XPG SX6000 Lite 512 GB turned out to be two and not four, as on a more expensive SSD.

 

Actually, in this lies the main feature of XPG SX6000 Lite. If XPG SX6000 Pro used chips collected most of ADATA 256-Gigabit 64-layer semiconductor crystals TLC 3D NAND, purchased from Toshiba, now on-chip flash memory emblazoned marking SpecTek. And this is a clear sign, well describing the complexity of the drive, because SpecTek, a subsidiary of Micron, through which American manufacturer of semiconductors, so as not to tarnish his reputation, sells products with reduced quality grades. However, the TLC 3D NAND chips, which are mounted on XPG SX6000 Lite, belong to the category of Full Spec for SSD (100%), that is, they are pre-tested and still recognized by the manufacturer fit for use in SSDs.

Each chip flash memory contains within itself the four semiconductor crystal TLC 3D NAND with increased up to 512 GB capacity, and this means that the four-channel controller Realtek RTS5763DL in poltorabatko drive is able to use only a two-fold alternation of the devices in the channels. That is why the model number XPG SX6000 Lite performance with growth increases up to a maximum versions of the SSD capacity of 1 terabyte.

All circuitry ADATA XPG SX6000 Lite fits in three chips. In addition to the flash memory on the Board is a basic and controller Realtek and no more additions and are not required. On the Board are empty “landing pad” under additional chips flash memory, but they are utilized exclusively for the senior modification. Usual same chip dynamic memory here is not needed at all, because we consider the SSD relies on the unbuffered architecture and technology HMB.

Although XPG SX6000 Lite and is among the most affordable NVMe SSD, which finds a direct reflection in its hardware design, ADATA suddenly paid some attention to the heat sink. The SSD comes complete with aluminum heat distribution plate with an adhesive layer, which the user can optionally attach to the surface of the chip.

However, its small thickness and the sleek profile is unlikely to provide a high efficiency of heat dissipation, but even this option is still better than nothing.

#Software

With the service software from ADATA, the situation is far better. Proprietary tool for storage companies exist, but is it extremely sluggish, but its features and interface leave much to be desired. Moreover, a number of users who activated the zoom function of the interface in Windows, in General, she can not use.

However, the basic functionality utility ADATA SSD Toolbox still provides.

 

So, in addition to issuing full diagnostic information about SSD, ADATA SSD Toolbox allows you to inspect the flash memory drive, send him a package of TRIM commands, or perform the automatic adjustment of operating system settings (disabling Superfetch, Prefetch and Defrag).

 

Also using ADATA SSD Toolbox to upgrade the firmware and perform a Secure Erase procedure.

 

In addition, after registration, acquired XPG SX6000 Lite on the manufacturer’s website you can get the key to a popular program for cloning data Acronis True Image HD 2013/2015.

SOURCE

Advertisement
Code: YDCDVBZX. Only $159.99 for GPS WIFI FPV Brushless Drone with FHD 1080P Camera Follow Me Mode RC with $50 coupon code YDCDVBZX
World''s 1st iPhone and iPad data recovery software.
Continue Reading

Peripherals

Overview NVMe SSD-drive Transcend MTE220S: cheap – not so bad

Advertisement
Code: VZWDEAL. Enter this coupon code at checkout to get $100 discount on Samsung Galaxy Note 8. Includes free shipping. Restrictions may apply. Device payment purchase required.

It just so happens that the manufacturers of SSDs, which until now has not got its own teams of controllers, but do not want to overlook the market for SSD enthusiasts, no particular choice today. Suitable option for them, allowing to organize the Assembly really productive drives with the NVMe interface that offers only one company is Silicon Motion, which is ready to deliver integrated solutions from your controller and firmware ready for everyone. Public base IC to build NVMe drives and there are other firms, for example, the same Phison or Realtek, but that Silicon Motion has taken the lead in this area, offering partners not only more functional, but much more fast acting solutions.

At the same time, among the huge variety of NVMe drives based on controllers Silicon Motion, of interest to enthusiasts can imagine not all models. This company produces a wide range of microchips with a fundamentally different level of performance, but performance worthy of an SSD for advanced or maximum configuration, can provide only selected platforms. In particular, last year we spoke about the controller SM2262: by the standards of 2018, he really looked very attractive, enabling drives based on it act on an equal footing with the best consumer NVMe SSD manufacturers of the first echelon, including Samsung, Western Digital and Intel.

But this year the situation has changed, as leading manufacturers have updated their mass top-level model. In response, Silicon Motion began to offer our partners an improved version of last year’s controller, SM2262EN, which also promises increase in performance – primarily in recording speed. It turns out, that storage devices based on this chip should be interested buyers who expect to get a more modern and fast NVMe drive, but do not want to overpay for the possession product A brand.

Until recently, the new controller SM2262EN used in their products is not so many manufacturers. In fact, the choice boiled down to two options: ADATA XPG SX8200 Pro and HP EX950. But now appeared the third storage device based on this chip – it has mastered the production of the company Transcend. With this new product, called Transcend MTE220S, we’re going to explore in this review.

Inputs to this familiarity are. HP EX950 not available in Russia, and ADATA XPG SX8200 Pro in our recent testing nothing trumps not demonstrated, suggesting that the performance of drives on the last controller SM2262. And this means that, despite the emergence of new versions of the Silicon Image controller, no NVMe SSD that would be able to compete with fresh 970 Samsung EVO Plus , we have not yet seen. Will Transcend MTE220S more interesting in comparison with ADATA XPG SX8200 Pro version, we are going to find out in this review. But it should be emphasized that, even if this SSD and not flash high-speed parameters, it can still be quite interesting. Because Transcend was going to sell it at a surprisingly low price — at least low for a full drive PCI Express 3.0 x4 DRAM buffer and a three-dimensional TLC-memory.

#Specifications

Details about what is a controller SM2262EN, we talked when you met ADATA XPG SX8200 Pro. On the technical side, this chip is built on two ARM Cortex cores, uses an eight-channel interface for controlling the flash memory has a DDR3/DDR4 interface for buffer and supports the bus PCI Express 3.0 x4 NVM Express Protocol 1.3. In other words, it is a modern and complete solution for NVMe drives, which also has a very good performance theoretical performance and supports advanced error correction techniques.

Initially, the controller SM2262EN was submitted in August of 2017, along with the “simple” SM2262, however, was presented as his “advanced” version, delivery of which was to begin later. Apparently, Silicon Motion was going to hold it up to the market introduction of the 96-layer TLC 3D NAND then to offer accelerated comprehensive solutions with a denser flash memory. However, this plan fell through due to changing market trends: NAND chips began to fall in price rapidly, and manufacturers of memory decided to delay the introduction of new technologies. The result is Silicon Motion got tired of waiting and released SM2262EN as an update to SM2262 as part of the platform, oriented to work with a 64-layer TLC 3D NAND.

In this case, according to the formal specifications, version platform controller SM2262EN still promises performance improvements of up to 9% sequential read, up to 58 % – sequential writes, up to 14 % – with random reads, and up to 40% at random writes. But if to believe these numbers with great caution. The developers say directly – no modifications in the hardware structure SM2262EN implies, it uses exactly the same architecture as conventional SM2262. All the benefit is based on changes in the software part: platform with a new controller uses more sophisticated algorithms to record and SLC-caching. In other words, we are talking about some attempt to cut corners, not that the engineers managed to make a breakthrough in the mechanisms work.

What this means in practice, we have seen, when tested ADATA XPG SX8200 Pro based controller SM2262EN. This drive was faster than its predecessor the chip SM2262 only in benchmarks, but offered no noticeable improvement in real performance. However, Transcend MTE220S the story is somewhat different. This drive has no close relatives in the lineup, and to Transcend this brand new model. In light of the fact that early in the lineup of this manufacturer was only NVMe SSD entry-level passport characteristics MTE220S look very impressive.

Manufacturer Transcend
Series MTE220S
Model number TS256GMTE220S TS512GMTE220S TS1TMTE220S
Form factor M. 2 2280
Interface PCI Express 3.0 x4 NVMe 1.3
Capacity, GB 256 512 1024
Configuration
Memory chips: type, interface, process technology, manufacturer Toshiba 64-layer 256-Gbit 3D TLC NAND
Controller SMI SM2262EN
Buffer: type, volume DDR3-1866,
256 MB
DDR3-1866,
512 MB
DDR3-1866,
1024 MB
Performance
Max. sustained sequential read, MB/s 3500 3500 3500
Max. sustained sequential write speed, MB/s 1100 2100 2800
Max. speed of random read (blocks 4 KB) IOPS 210 000 210 000 360 000
Max. speed random write (blocks 4 KB) IOPS 290 000 310 000 425 000
Physical characteristics
Power consumption: inaction/read-write, W N/a
MTBF (mean time between failures), million h 1,5
Resource record, TB 260 400 800
Dimensions: Ghvhg, mm 80 × 22 × 3,5
Weight, g 8
Warranty period, years 5

Interestingly, the claimed performance Transcend MTE220S slightly below those speeds promised for your similar drive based controller SM2262EN ADATA. Apparently this is due to the fact that although MTE220S and uses the same hardware and software platform, its design differs from the reference. For your drive, Transcend has designed its own printed circuit Board, where in order to reduce abandoned the use of 32-bit DRAM interface buffer in favor of more cost-effective, 16-bit connections. The result is lower top speed of random read and write, and this is especially noticeable in the version of the drive capacity of 512 GB.

However, SLC caching to Transcend MTE220S works exactly the same as other drives with the controller SM2262EN. The cache uses a dynamic scheme when one bit in a crash mode translates the part of the TLC memory from the underlying array. The cache size is chosen so that in the SLC-mode worked about half of the free flash memory. Thus, high speed MTE220S you can record the amount of data, the size of approximately a sixth of the available space on the SSD, then the speed will be significantly reduced.

This can be illustrated by the following graph, which shows how the performance of a continuous sequential write to blank Transcend MTE220S a capacity of 512 GB.

In accelerated mode, when the recording is performed in the SLC-mode, a 512-Gigabyte version MTE220S provides the performance level of 1.9 GB/s In TLC mode, the array of flash memory runs significantly slower, and after the exhaustion of free space in the SLC cache, the speed is reduced to 460 MB/s. On the chart is visible and the third option is speed – 275 Mbps. To the point performance when sequential write is reduced in the case when the free flash memory is longer, and in order to put some additional data the controller you first need to translate the cell is used for SLC-cache in normal TLC mode. The result is that the average speed of continuous recording on a Transcend 512 GB MTE220S “from the beginning to the end” is about 410 MB/s, and to fill up this drive data is necessary to spend at least 21 minutes. It is not too optimistic: for example, the same 970 Samsung EVO Plus you can completely clog the eyeballs in just 10 minutes.

While SLC-cache Transcend MTE220S characterized by the same unique feature we found in ADATA XPG SX8200 Pro. Data is transferred in conventional memory is not immediately, and only when it is filled more than three quarters. This allows to increase the speed of reading when referring to files that were recorded just. This option makes little sense in real-world use of the SSD, but it helps a lot to drive in synthetic benchmarks, which are practicing scenarios of the “record — reading”.

How this looks in practice can be assessed according to the following schedule speed random reads when accessing the file immediately after you created it when following this file in the SSD was recorded some amount of information.

Here very clearly seen the moment when the controller moves the test file from the SLC cache to the main flash memory, because the speed melkoplodnogo reading at this point drops about 10 %. With such a reduced speed and will have the business users in the vast majority of cases, since there are no reverse algorithms move data from TLC memory in the SLC cache in the firmware Transcend MTE220S not provided, and to stay in SLC-cache files just in case, if the drive is in the process of operation remains free more than 90 percent.

In other words, the work of SLC-cache Transcend MTE220S little different from other drives based on controller SM2262EN. But this does not mean that it is similar to ADATA XPG SX8200 Pro in all. The Transcend offers a significant advantage of a different order – a higher allowed by the terms of the guarantee the amounts of rewriting. Without loss of drive can be completely overwritten data 800 times, and the version of 256 GB is more than 1000 times. Such parameters of the declared resources allow to hope for MTE220S manufacturer of purchased the flash memory of the higher gradation of quality, and this means that the actual reliability of the drive can make even those users who still belong to TLC 3D NAND with a large grain of salt.

#Appearance and internal structure

For a detailed acquaintance by tradition the model has been chosen to Transcend MTE220S of 512 GB. No surprises its good looks, it is not presented, it is the usual storage form factor M. 2 2280, which operates via the bus PCI Express 3.0 x4, and supports the NVM Express Protocol version 1.3. However, the type of packaging and delivery MTE220S evoke stable Association with cheap consumer goods. Even budget UN-buffered SSD MTE110S the company sold in a full box, and the novelty is positioned as a solution to a higher level, were Packed in blister packs, in which, in addition to the M. 2 card storage, no nothing. This is all very reminiscent of the kind available on the market microSD card, and obviously serves the purpose of reducing overhead costs. However, hardly anyone still chooses SSD packing.

Not an impressive appearance and consider myself an SSD. In its design there are no radiators, and the sticker does not have a layer of heat-conducting foil. And in General Transcend MTE220S looks more like an OEM product, rather than as a solution for enthusiasts. Emphasizes this impression is PCB PCB is almost forgotten already green and purely utilitarian label, which has no signs of design, and contains only service information.

The layout of the Board MTE220S not be called model — it, apparently, Transcend the engineers have modified for their own needs. At least previously reviewed the ADATA XPG SX8200 Pro despite using the same hardware platform, looked quite different. However, the bilateral arrangement of the components of the new Transcend preserved, therefore, for “low profile” slots M. 2, which occur in thin laptops, MTE220S may not be suitable.

 

An array of flash memory located on MTE220S 512GB scored four chips with their own marking Transcend. Know that within each of these circuits is four 256-Gigabit crystal 64-ply Micron memory TLC 3D NAND second generation. Transcend buys such a memory from Toshiba in the form of solid plates, but cutting, testing and packaging of silicon chips in the chip takes over, which allows to achieve additional production savings.

Attention should be paid and a chip DDR4-1866 SDRAM, next to the chip base controller SM2262EN. It serves as a buffer to store a copy of the table of address translation, but it is important here that in the drive there is only one such chip, manufactured by Samsung, with a capacity of 512 MB. We specially pay attention to it, as other SSD controller SM2262EN fast DRAM buffer typically consists of a pair of chips less than half volume. As a result, Transcend MTE220S work with DRAM buffer occurs via a 16-bit, not 32-bit bus, which in theory can hurt performance when melkoplodnyj operations. However, the influence of this factor should not be overestimated: a 32-bit bus for the RAM is a unique feature of the platform SM2262/SM2262EN, while the other controllers to use SSD DRAM buffer with 16-bit bus and absolutely do not suffer from this.

#Software

For service drives its own production the company produces special utility Transcend SSD Scope. It’s almost typical for software of this class, but some familiar features for some reason are not supported.

 

SSD Scope allows you to monitor the overall status of your drive and assess his health, referring to the telemetry S. M. A. R. T. utility available, simple tests of speed and also check the firmware version and its updates.

 

Also, the utility includes a tool to clone the contents of disks, which enables quick and painless to transfer the operating system and installed applications on freshly bought SSD. Plus, the SSD Scope is able to control the transmission to the drive the TRIM command.

 

For SATA SSD Scope may also offer validation of the array of flash memory for errors or performing a procedure “reliable cleaning” flash memory Secure Erase. But with Transcend MTE220S both of these functions for some reason do not work.

SOURCE

Advertisement
Code: FALL25. Subscribe in October and receive 25% Off the yearly membership!
Save $50 and receive free two-day shipping on an Astell&Kern AK380 Leather Case!
Continue Reading

Deals

Advertisement
YYD2-ST1000DM010CA Seagate Barracuda 1TB Hard Drive - 3.5" Form Factor, SATA 6Gb/s Interface, 64MB Buffer, Internal - ST1000DM010
Code: NONE. Free Website Transfer to UltraWebhosting.com w/ purchase of Annual Package! Shop now!
Save $1,000 and receive free two-day shipping on a Sony VPL-HW65ES HD Home Cinema Projector

Trending